Benchmarks¶
Benchmarks for different models and loss functions on various datasets.
All the experiments are conducted under the settings of:
- 4 GPUs for training, meaning that
CUDA_VISIBLE_DEVICES=0,1,2,3
is set for the training scripts - Total effective batch size of 256. Consider reducing batch size and learning rate if you only have one GPU. See Multi-GPU and Batch Size for more details.
- Use the default dataset split
--split 0
, but combine training and validation sets for training models--combine-trainval
- Use the default random seed
--seed 1
- Use Euclidean distance directly for evaluation
- Use single-query and single-crop for evaluation
- Full set of evaluation metrics are reported. See Evaluation Metrics for more explanations.
CUHK03¶
Net Loss Mean AP CMC allshots CMC cuhk03 CMC market1501 Training Script Inception Triplet N/A N/A N/A N/A N/A Inception Softmax 65.8 48.6 73.2 71.0 python examples/softmax_loss.py -d cuhk03 -a inception --combine-trainval --epochs 70 --logs-dir examples/logs/softmax-loss/cuhk03-inception
Inception OIM 71.4 56.0 77.7 76.5 python examples/oim_loss.py -d cuhk03 -a inception --combine-trainval --oim-scalar 20 --epochs 70 --logs-dir examples/logs/oim-loss/cuhk03-inception
ResNet-50 Triplet 80.7 67.9 84.3 85.0 python examples/triplet_loss.py -d cuhk03 -a resnet50 --combine-trainval --logs-dir examples/logs/triplet-loss/cuhk03-resnet50
ResNet-50 Softmax 62.7 44.6 70.8 69.0 python examples/softmax_loss.py -d cuhk03 -a resnet50 --combine-trainval --logs-dir examples/logs/softmax-loss/cuhk03-resnet50
ResNet-50 OIM 72.5 58.2 77.5 79.2 python examples/oim_loss.py -d cuhk03 -a resnet50 --combine-trainval --oim-scalar 30 --logs-dir examples/logs/oim-loss/cuhk03-resnet50
Market1501¶
Net Loss Mean AP CMC allshots CMC cuhk03 CMC market1501 Training Script Inception Triplet N/A N/A N/A N/A N/A Inception Softmax 51.8 26.8 57.1 75.8 python examples/softmax_loss.py -d market1501 -a inception --combine-trainval --epochs 70 --logs-dir examples/logs/softmax-loss/market1501-inception
Inception OIM 54.3 30.1 58.3 77.9 python examples/oim_loss.py -d market1501 -a inception --combine-trainval --oim-scalar 20 --epochs 70 --logs-dir examples/logs/oim-loss/market1501-inception
ResNet-50 Triplet 67.9 42.9 70.5 85.1 python examples/triplet_loss.py -d market1501 -a resnet50 --combine-trainval --logs-dir examples/logs/triplet-loss/market1501-resnet50
ResNet-50 Softmax 59.8 35.5 62.8 81.4 python examples/softmax_loss.py -d market1501 -a resnet50 --combine-trainval --logs-dir examples/logs/softmax-loss/market1501-resnet50
ResNet-50 OIM 60.9 37.3 63.6 82.1 python examples/oim_loss.py -d market1501 -a resnet50 --combine-trainval --oim-scalar 20 --logs-dir examples/logs/oim-loss/market1501-resnet50
DukeMTMC¶
Net Loss Mean AP CMC allshots CMC cuhk03 CMC market1501 Training Script Inception Triplet N/A N/A N/A N/A N/A Inception Softmax 34.0 17.4 39.2 54.4 python examples/softmax_loss.py -d dukemtmc -a inception --combine-trainval --epochs 70 --logs-dir examples/logs/softmax-loss/dukemtmc-inception
Inception OIM 40.6 22.4 45.3 61.7 python examples/oim_loss.py -d dukemtmc -a inception --combine-trainval --oim-scalar 30 --epochs 70 --logs-dir examples/logs/oim-loss/dukemtmc-inception
ResNet-50 Triplet 54.6 34.6 57.5 73.1 python examples/triplet_loss.py -d dukemtmc -a resnet50 --combine-trainval --logs-dir examples/logs/triplet-loss/dukemtmc-resnet50
ResNet-50 Softmax 40.7 23.7 44.3 62.5 python examples/softmax_loss.py -d dukemtmc -a resnet50 --combine-trainval --logs-dir examples/logs/softmax-loss/dukemtmc-resnet50
ResNet-50 OIM 47.4 29.2 50.4 68.1 python examples/oim_loss.py -d dukemtmc -a resnet50 --combine-trainval --oim-scalar 30 --logs-dir examples/logs/oim-loss/dukemtmc-resnet50
Attention
No test-time augmentation is used. We have fixed a bug in the learning rate scheduler for the Triplet loss. Now the result of ResNet-50 with Triplet loss is slightly better than the “original” setting in [hermans2017in] (Table 4).