reid.models¶
-
reid.models.
create
(name, *args, **kwargs)[source]¶ Create a model instance.
Parameters: - name (str) – Model name. Can be one of ‘inception’, ‘resnet18’, ‘resnet34’, ‘resnet50’, ‘resnet101’, and ‘resnet152’.
- pretrained (bool, optional) – Only applied for ‘resnet*’ models. If True, will use ImageNet pretrained model. Default: True
- cut_at_pooling (bool, optional) – If True, will cut the model before the last global pooling layer and ignore the remaining kwargs. Default: False
- num_features (int, optional) – If positive, will append a Linear layer after the global pooling layer, with this number of output units, followed by a BatchNorm layer. Otherwise these layers will not be appended. Default: 256 for ‘inception’, 0 for ‘resnet*’
- norm (bool, optional) – If True, will normalize the feature to be unit L2-norm for each sample. Otherwise will append a ReLU layer after the above Linear layer if num_features > 0. Default: False
- dropout (float, optional) – If positive, will append a Dropout layer with this dropout rate. Default: 0
- num_classes (int, optional) – If positive, will append a Linear layer at the end as the classifier with this number of output units. Default: 0