from __future__ import print_function, absolute_import
import os.path as osp
from ..utils.data import Dataset
from ..utils.osutils import mkdir_if_missing
from ..utils.serialization import write_json
[docs]class Market1501(Dataset):
url = 'https://drive.google.com/file/d/0B8-rUzbwVRk0c054eEozWG9COHM/view'
md5 = '65005ab7d12ec1c44de4eeafe813e68a'
def __init__(self, root, split_id=0, num_val=100, download=True):
super(Market1501, self).__init__(root, split_id=split_id)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted. " +
"You can use download=True to download it.")
self.load(num_val)
def download(self):
if self._check_integrity():
print("Files already downloaded and verified")
return
import re
import hashlib
import shutil
from glob import glob
from zipfile import ZipFile
raw_dir = osp.join(self.root, 'raw')
mkdir_if_missing(raw_dir)
# Download the raw zip file
fpath = osp.join(raw_dir, 'Market-1501-v15.09.15.zip')
if osp.isfile(fpath) and \
hashlib.md5(open(fpath, 'rb').read()).hexdigest() == self.md5:
print("Using downloaded file: " + fpath)
else:
raise RuntimeError("Please download the dataset manually from {} "
"to {}".format(self.url, fpath))
# Extract the file
exdir = osp.join(raw_dir, 'Market-1501-v15.09.15')
if not osp.isdir(exdir):
print("Extracting zip file")
with ZipFile(fpath) as z:
z.extractall(path=raw_dir)
# Format
images_dir = osp.join(self.root, 'images')
mkdir_if_missing(images_dir)
# 1501 identities (+1 for background) with 6 camera views each
identities = [[[] for _ in range(6)] for _ in range(1502)]
def register(subdir, pattern=re.compile(r'([-\d]+)_c(\d)')):
fpaths = sorted(glob(osp.join(exdir, subdir, '*.jpg')))
pids = set()
for fpath in fpaths:
fname = osp.basename(fpath)
pid, cam = map(int, pattern.search(fname).groups())
if pid == -1: continue # junk images are just ignored
assert 0 <= pid <= 1501 # pid == 0 means background
assert 1 <= cam <= 6
cam -= 1
pids.add(pid)
fname = ('{:08d}_{:02d}_{:04d}.jpg'
.format(pid, cam, len(identities[pid][cam])))
identities[pid][cam].append(fname)
shutil.copy(fpath, osp.join(images_dir, fname))
return pids
trainval_pids = register('bounding_box_train')
gallery_pids = register('bounding_box_test')
query_pids = register('query')
assert query_pids <= gallery_pids
assert trainval_pids.isdisjoint(gallery_pids)
# Save meta information into a json file
meta = {'name': 'Market1501', 'shot': 'multiple', 'num_cameras': 6,
'identities': identities}
write_json(meta, osp.join(self.root, 'meta.json'))
# Save the only training / test split
splits = [{
'trainval': sorted(list(trainval_pids)),
'query': sorted(list(query_pids)),
'gallery': sorted(list(gallery_pids))}]
write_json(splits, osp.join(self.root, 'splits.json'))