Source code for reid.models.inception

from __future__ import absolute_import

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import init


__all__ = ['InceptionNet', 'inception']


def _make_conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1,
               bias=False):
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size,
                     stride=stride, padding=padding, bias=bias)
    bn = nn.BatchNorm2d(out_planes)
    relu = nn.ReLU(inplace=True)
    return nn.Sequential(conv, bn, relu)


class Block(nn.Module):
    def __init__(self, in_planes, out_planes, pool_method, stride):
        super(Block, self).__init__()
        self.branches = nn.ModuleList([
            nn.Sequential(
                _make_conv(in_planes, out_planes, kernel_size=1, padding=0),
                _make_conv(out_planes, out_planes, stride=stride)
            ),
            nn.Sequential(
                _make_conv(in_planes, out_planes, kernel_size=1, padding=0),
                _make_conv(out_planes, out_planes),
                _make_conv(out_planes, out_planes, stride=stride))
        ])

        if pool_method == 'Avg':
            assert stride == 1
            self.branches.append(
                _make_conv(in_planes, out_planes, kernel_size=1, padding=0))
            self.branches.append(nn.Sequential(
                nn.AvgPool2d(kernel_size=3, stride=1, padding=1),
                _make_conv(in_planes, out_planes, kernel_size=1, padding=0)))
        else:
            self.branches.append(
                nn.MaxPool2d(kernel_size=3, stride=stride, padding=1))

    def forward(self, x):
        return torch.cat([b(x) for b in self.branches], 1)


[docs]class InceptionNet(nn.Module): def __init__(self, cut_at_pooling=False, num_features=256, norm=False, dropout=0, num_classes=0): super(InceptionNet, self).__init__() self.cut_at_pooling = cut_at_pooling self.conv1 = _make_conv(3, 32) self.conv2 = _make_conv(32, 32) self.conv3 = _make_conv(32, 32) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=1) self.in_planes = 32 self.inception4a = self._make_inception(64, 'Avg', 1) self.inception4b = self._make_inception(64, 'Max', 2) self.inception5a = self._make_inception(128, 'Avg', 1) self.inception5b = self._make_inception(128, 'Max', 2) self.inception6a = self._make_inception(256, 'Avg', 1) self.inception6b = self._make_inception(256, 'Max', 2) if not self.cut_at_pooling: self.num_features = num_features self.norm = norm self.dropout = dropout self.has_embedding = num_features > 0 self.num_classes = num_classes self.avgpool = nn.AdaptiveAvgPool2d(1) if self.has_embedding: self.feat = nn.Linear(self.in_planes, self.num_features) self.feat_bn = nn.BatchNorm1d(self.num_features) else: # Change the num_features to CNN output channels self.num_features = self.in_planes if self.dropout > 0: self.drop = nn.Dropout(self.dropout) if self.num_classes > 0: self.classifier = nn.Linear(self.num_features, self.num_classes) self.reset_params() def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.pool3(x) x = self.inception4a(x) x = self.inception4b(x) x = self.inception5a(x) x = self.inception5b(x) x = self.inception6a(x) x = self.inception6b(x) if self.cut_at_pooling: return x x = self.avgpool(x) x = x.view(x.size(0), -1) if self.has_embedding: x = self.feat(x) x = self.feat_bn(x) if self.norm: x = x / x.norm(2, 1).expand_as(x) elif self.has_embedding: x = F.relu(x) if self.dropout > 0: x = self.drop(x) if self.num_classes > 0: x = self.classifier(x) return x def _make_inception(self, out_planes, pool_method, stride): block = Block(self.in_planes, out_planes, pool_method, stride) self.in_planes = (out_planes * 4 if pool_method == 'Avg' else out_planes * 2 + self.in_planes) return block def reset_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias is not None: init.constant(m.bias, 0)
[docs]def inception(**kwargs): return InceptionNet(**kwargs)