Source code for reid.models.resnet

from __future__ import absolute_import

from torch import nn
from torch.nn import functional as F
from torch.nn import init
import torchvision


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']


[docs]class ResNet(nn.Module): __factory = { 18: torchvision.models.resnet18, 34: torchvision.models.resnet34, 50: torchvision.models.resnet50, 101: torchvision.models.resnet101, 152: torchvision.models.resnet152, } def __init__(self, depth, pretrained=True, cut_at_pooling=False, num_features=0, norm=False, dropout=0, num_classes=0): super(ResNet, self).__init__() self.depth = depth self.pretrained = pretrained self.cut_at_pooling = cut_at_pooling # Construct base (pretrained) resnet if depth not in ResNet.__factory: raise KeyError("Unsupported depth:", depth) self.base = ResNet.__factory[depth](pretrained=pretrained) if not self.cut_at_pooling: self.num_features = num_features self.norm = norm self.dropout = dropout self.has_embedding = num_features > 0 self.num_classes = num_classes out_planes = self.base.fc.in_features # Append new layers if self.has_embedding: self.feat = nn.Linear(out_planes, self.num_features) self.feat_bn = nn.BatchNorm1d(self.num_features) init.kaiming_normal(self.feat.weight, mode='fan_out') init.constant(self.feat.bias, 0) init.constant(self.feat_bn.weight, 1) init.constant(self.feat_bn.bias, 0) else: # Change the num_features to CNN output channels self.num_features = out_planes if self.dropout > 0: self.drop = nn.Dropout(self.dropout) if self.num_classes > 0: self.classifier = nn.Linear(self.num_features, self.num_classes) init.normal(self.classifier.weight, std=0.001) init.constant(self.classifier.bias, 0) if not self.pretrained: self.reset_params() def forward(self, x): for name, module in self.base._modules.items(): if name == 'avgpool': break x = module(x) if self.cut_at_pooling: return x x = F.avg_pool2d(x, x.size()[2:]) x = x.view(x.size(0), -1) if self.has_embedding: x = self.feat(x) x = self.feat_bn(x) if self.norm: x = x / x.norm(2, 1).expand_as(x) elif self.has_embedding: x = F.relu(x) if self.dropout > 0: x = self.drop(x) if self.num_classes > 0: x = self.classifier(x) return x def reset_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias is not None: init.constant(m.bias, 0)
[docs]def resnet18(**kwargs): return ResNet(18, **kwargs)
[docs]def resnet34(**kwargs): return ResNet(34, **kwargs)
[docs]def resnet50(**kwargs): return ResNet(50, **kwargs)
[docs]def resnet101(**kwargs): return ResNet(101, **kwargs)
[docs]def resnet152(**kwargs): return ResNet(152, **kwargs)